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ABSTRACT
BACKGROUND: Conventional paradigms in clinical neuroscience tend to be constrained in terms of ecological
validity, raising several challenges to studying the mechanisms mediating treatments and outcomes in clinical set-
tings. Addressing these issues requires real-world neuroimaging techniques that are capable of continuously
collecting data during free-flowing interpersonal interactions and that allow for experimental designs that are
representative of the clinical situations in which they occur.
METHODS: In this work, we developed a paradigm that fractionates the major components of human-to-human
verbal interactions occurring in clinical situations and used functional near-infrared spectroscopy to assess the
brain systems underlying clinician-client discourse (N = 30).
RESULTS: Cross-brain neural coupling between people was significantly greater during clinical interactions
compared with everyday life verbal communication, particularly between the prefrontal cortex (e.g., inferior frontal
gyrus) and inferior parietal lobule (e.g., supramarginal gyrus). The clinical tasks revealed extensive increases in activity
across the prefrontal cortex, especially in the rostral prefrontal cortex (area 10), during periods in which participants
were required to silently reason about the dysfunctional cognitions of the other person.
CONCLUSIONS: This work demonstrates a novel experimental approach to investigating the neural underpinnings of
interpersonal interactions that typically occur in clinical settings, and its findings support the idea that particular
prefrontal systems might be critical to cultivating mental health.

https://doi.org/10.1016/j.bpsc.2022.01.008
A common framework of neuroimaging methods investigating
the treatment of psychopathological disorders is to collect
neuroimaging data periodically at particular stages of treat-
ment rather than continuously in situ (1). Although this frame-
work is excellent for examining the effects of clinical
interventions on behavioral, affective, and physiological
responding (2), it creates an important explanatory gap
regarding the nature of the neural systems by which these
changes are brought about during the clinical interpersonal
interactions that are central to a multitude of treatments
(Figure 1). In other words, neuroimaging techniques are
currently being used to study etiopathogenic mechanisms and
cortical dysregulation as well as the effects and efficacy of
(non)psychopharmacological treatments on changes in neural
activity and behavior, such as functional near-infrared spec-
troscopy (fNIRS) (2–5). However, observing only the effects of
interventions, such as decreases in maladaptive behavior,
emotion dysregulation, and functional dysconnectivity (6,7),
limits our understanding of the neurocognitive mechanisms by
which adaptive changes in mental health are cultivated during
treatment (8). For instance, what is it about interpersonal in-
teractions in clinical situations that fosters healthier thinking,
feeling, and behaving on the part of patients? Second-person
neuroscience approaches to investigating such neuropsychiatric
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questions might represent a path toward addressing this
explanatory gap. Indeed, the neural systems in which clinicians
engage to treat patients and those in which patients also
probably learn to engage remain largely unclear.

The chief reason why data are not collected in situ is that
there are inherent limitations to most neuroimaging methods
that constrain the types of experimental designs that can be
used in intervention-type settings (1,2). So, to investigate the
neurocognitive mechanisms of interest during treatment, the
method that should ideally be adopted is one that allows for
real-world paradigms and the collection of data relating to
interpersonal information processing dynamics. Recent
cognitive neuroscientific research has acknowledged this need
for a multiperson and, indeed, multimodal framework by using
the neuroimaging technique of hyperscanning to explore the
intersubject systems underpinning human-to-human interac-
tion (9–23). Hyperscanning measures hemodynamic changes
and interpersonal brain synchronization between 2 or more
individuals while engaging in interactive tasks in naturalistic or
laboratory settings [see (24–27) for reviews]. Neuroimaging
methods such as functional magnetic resonance imaging and
electroencephalography have used this technique in several
studies, with a growing number of publications using fNIRS-
based hyperscanning (28). For example, portable, wireless
iological Psychiatry. Published by Elsevier Inc. All rights reserved. 1
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Figure 1. Data collection in psychotherapy. Neu-
roimaging and psychological methods typically collect
physiological, behavioral, cognitive, and affective data
periodically, such as pretreatment, between treatment
sessions, and after treatment, to examine the effects of
an intervention on the dependent variables of interest
over time, leaving an explanatory gap regarding the
potential neurocognitive mechanisms by which these
effects are actuated and cultivated within treatment
sessions. Adopting a more in situ approach that col-
lects data within particular treatment sessions should
address this issue. Therefore, a hybrid approach of the
former and latter stands the best chances of capturing
the changes facilitating mental health.
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neuroimaging systems are methodological complements to
experimental designs that are more naturalistic or ecological
(29). But what type of ecological experimental design is then
appropriate for investigating clinically representative settings
and situations yet retains the degree of scientific control
required in contemporary cognitive neuroscience? It is prob-
ably one that approaches the conundrum of clinical interper-
sonal interactions by attempting to fractionate their core
modality: verbal communication. The fact that the dialogue
between clinicians and clients is typically dialectical in nature
represents the most clinically significant use of language in
verbal interventions (30–32). For example, clients express
thoughts as statements or propositions about goal-
incongruent events, reflecting specific dysfunctional cognitive
schemas and appraisals (33,34), and, in turn, clinicians use
various adaptive strategies to challenge the veracity and utility
of these thoughts (35,36).

What is perhaps most demanding of clinicians is their task
that immediately precedes this verbal intervention: to critically
think about and recogitate clients’ beliefs (1,8). A standard
position that might be adopted from our knowledge of cogni-
tive neuroscience so far might be that the brain systems taxed
by such a process likely depend in part on executive sub-
systems based in the prefrontal cortex (PFC) that are dedi-
cated to solving ill-structured, linguistically mediated reasoning
problems [see (37) for review]. In this case, these subsystems
likely modulate a more posterior, semantic network in which
maladaptive schema and appraisal processes are represented
and stored (38). If this is the case, then the literature in this area
of cognitive control (39–47) and emotion regulation [(48–51);
see (46,52) for reviews] suggest that the rostral PFC (area 10)
and middle frontal gyrus (area 46) might play a marked role in
this thinking task that potentially drives not only clinician-led
verbal interventions but also eventual client-led ones inde-
pendent of treatment settings.

A few fNIRS-based hyperscanning studies on verbal
communication have recently been conducted to examine the
neural underpinnings of dynamic coupling between people
during natural dialogue (13,18,19,22,53,54), with common
findings in subregions that have long been implicated in
speech production and comprehension such as Broca’s and
Wernicke’s areas, respectively, as well as in the PFC sub-
regions mentioned above. Interpersonal synchronization has
tended to be significantly greater between people during these
verbal interactions as compared with random pairings of
2 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging - 2
participants who nevertheless conversed, but not with each
other. However, no study to our knowledge has developed an
experimental design that can be adapted to different clinical
settings to specifically assess the inter- and intraneural dy-
namics of verbal exchanges in clinical situations, particularly
their epochs (e.g., speaking, listening, and thinking), or have
such exchanges been compared with nonclinical verbal
communication to assess what is unique about clinical in-
teractions that make the clinician successful or the interaction
compelling to the client.

Accordingly, the aim of this work was to use a real-world
approach to developing a neuroimaging paradigm that ad-
dresses these theoretical and practical lacunae. It was pre-
dicted that because clinical situations are inherently more
interactive and normative than everyday instances of verbal
communication, clinical interpersonal interactions will elicit
greater cross-brain coherence in paired participants engaging
in the roles of clinician and client compared with a control
condition and that within-brain contrasts will show cognitive
resource consumption predominately across the PFC. More-
over, because the tasks of clinicians in real-world treatment
settings are much less passive than those involved in everyday
discourse, it was hypothesized that periods of verbal inter-
vention, in which clinicians are required to dispute dysfunc-
tional cognitions about the self, others, and world, should
demonstrate changes in activity above and beyond normal
speaking demands, particularly in the rostral PFC (area 10) and
more posterior areas related to the semantic network. It was
further expected that perhaps to a greater degree, this pattern
of activity will also be demonstrated prior to verbal intervention
when clinicians covertly reason about dysfunctional cogni-
tions, namely in the rostral PFC and right middle frontal gyrus
(area 46).

METHODS AND MATERIALS

Participants

A total of 30 healthy adults (15 pairs; 80% female; mean age =
30.17 6 12.68 years; 97% right-handed) participated in the
study (55). All participants provided written informed consent in
accordance with guidelines provided by the Yale Human
Investigation Committee (HIC #1501015178) and were reim-
bursed for participation. Dyads were assigned in order of
recruitment, and no individual participated in more than one
dyad. Eligibility of participation was determined using two
022; -:-–- www.sobp.org/BPCNNI
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screening tasks, namely a right-handed finger-thumb tapping
task and passive viewing of a reversing checkboard while
fNIRS signals were acquired. A participant was selected for the
hyperscanning experiment if countercorrelated oxyhemoglobin
(HbO2) and deoxyhemoglobin (HbR) signals were observed in
the left motor hand area for the finger-tapping task (p , .05)
and in the bilateral occipital lobe for the passive viewing task (p
, .05). This screening procedure attempted to ensure that the
fNIRS signals of the sample were reliable and not confounded
by irregularities in skull thickness, fat deposits, bone density,
and blood chemistry (56–58).

Experimental Paradigm

Participants were seated approximately 140 cm across a table
and with a full field of vision of each other in a normal room
(Figure S1). A computer screen was also positioned approxi-
mately 45� to the side of this face-to-face orientation and 70
cm from each participant’s face; so, the participants in each
dyad had their own computer screens from which to view
stimuli that only they could see and at which they needed not
to turn their heads to look. Participants engaged in four con-
ditions (counterbalanced). The two factors classifying them
were situation and role. In the clinical situation, each partici-
pant was able to act as both the clinician and client; in the
control condition, each participant was able to act as the
speaker and responder (Figure S2). No participant was used
more than once, and each partner in a dyad was always
different. The experimental design was therefore blocked and
adopted a repeated-measures approach.

The subtasks across these conditions and within dyads
included speaking, listening, and thinking epochs (Figure 2).
These subtasks, together with the stimuli, varied in nature
depending on whether the interpersonal interaction was clin-
ical. Namely, all stimuli shown on the computer screens were
linguistic propositions, but in clinical blocks they were
Biological Psychiatry: Cognitive Neuroscien
affective, or hot, conceptual valuations (59) [i.e., cognitive
appraisals (34)] and, more specifically, were dysfunctional in
that they were irrational and unrealistic in terms of being
ungrounded in logic, empiricism, and pragmatism (33), repre-
senting a conjunction of the major types of irrational thinking
(e.g., catastrophizing, self-downing, demandingness), for
example, “My friends must always treat me fairly,” whereas the
propositions in control blocks were purely descriptive facts
about the world, containing no evaluative or normative
component: “It is cheaper to buy produce from a farmers
market.”

Signal Acquisition and Optode Localization

fNIRS signal acquisition of hemodynamics was acquired using
a 80-fiber (108-channel) continuous-wave fNIRS system
(LABNIRS; Shimadzu Corp.) configured for hyperscanning (54
channels per person) and sampled at a rate of 27 Hz at three
wavelengths of light (780, 805, and 830 nm). A light-emitting
diode probe (Daiso Corp.) was used to achieve an orthog-
onal connection between the fNIRS optodes and scalp (i.e., to
displace hair in the cap). Anatomical locations of optodes in
relation to standard head landmarks, including inion and top
center (Cz) and left and right tragi, were determined using a
Patriot 3D Digitizer (Polhemus) and linear transform techniques
(60–64). Montreal Neurological Institute (MNI) coordinates (65)
for each channel were obtained using NIRS-SPM software (66)
with MATLAB (The MathWorks, Inc.).

Regions of Interest

The anatomical coverage of the channel configuration corre-
sponded with 11 bilateral regions of interest (ROIs) (Table 1
and Figure S3): rostral PFC (Brodmann area [BA] 10), middle
frontal gyrus (BA 46/9), inferior frontal gyrus (BA 44/45/47),
angular gyrus (BA 39), supramarginal gyrus (BA 40), middle
temporal gyrus (BA 21), superior temporal gyrus (BA 22),
Figure 2. Epochs. In a single trial of a clinical
block, the patient read a statement representing an
affective valuation while the clinician listened. The
clinician was required to first silently reason (reco-
gitate) about how the statement was dysfunctional
and then explain this reasoning while the patient
listened. In a single trial of a control block, the
speaker read a statement representing a descriptive
proposition while the repeater listened. The repeater
was required to first silently solve a problem relating
to the language of the statement and then repeat the
statement multiple times.
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Table 1. Group Median Coordinates, Anatomical Regions, and Atlas Probabilities of Channels

Left Hemisphere Right Hemisphere

Channel No. Coordinates Anatomical Region BA Probability Channel No. Coordinates Anatomical Region BA Probability

1 249, 244, 57 Supramarginal gyrus 40 0.97 28 53, 248, 55 Supramarginal gyrus 40 1

2 245, 38, 32 Middle frontal gyrus 46 0.68 29 62, 238, 48 Supramarginal gyrus 40 0.9

3 254, 14, 38 Middle frontal gyrus 9 0.78 30 63, 215, 45 Premotor cortex 6 0.53

4 258, 211, 47 Premotor cortex 6 0.70 31 60, 8, 38 Premotor cortex 6 0.46

5 258, 236, 51 Supramarginal gyrus 40 0.82 32 50, 33, 31 Middle frontal gyrus 46 0.7

6 216, 60, 34 Middle frontal gyrus 9 0.54 33 61, 253, 38 Supramarginal gyrus 40 0.96

7 244, 48, 22 Middle frontal gyrus 46 0.52 34 67, 227, 40 Supramarginal gyrus 40 0.46

8 257, 24, 21 Inferior frontal gyrus 45 0.54 35 66, 24, 37 Premotor cortex 6 0.99

9 262, 22, 35 Premotor cortex 6 0.92 36 60, 20, 25 Inferior frontal gyrus 45 0.42

10 264, 225, 41 Supramarginal gyrus 40 0.26 37 50, 43, 22 Middle frontal gyrus 46 0.8

11 261, 251, 40 Supramarginal gyrus 40 0.99 38 29, 56, 33 Middle frontal gyrus 9 0.6

12 255, 32, 12 Inferior frontal gyrus 45 0.57 39 68, 241, 29 Supramarginal gyrus 40 0.94

13 263, 6, 19 Premotor cortex 6 0.50 40 70, 218, 30 Primary somatosensory cortex 2 0.21

14 268, 216, 27 Subcentral area 43 0.27 41 66, 5, 23 Premotor cortex 6 0.55

15 267, 241, 30 Supramarginal gyrus 40 0.96 42 59, 30, 16 Inferior frontal gyrus 45 0.56

16 219, 71, 13 Rostral prefrontal cortex 10 1.00 43 65, 256, 17 Superior temporal gyrus 22 0.6

17 253, 42, 1 Inferior frontal gyrus 47 0.53 44 71, 232, 20 Supramarginal gyrus 40 0.42

18 258, 17, 2 Superior temporal gyrus 22 0.29 45 70, 29, 18 Subcentral area 43 0.44

19 267, 29, 13 Subcentral area 42 0.35 46 63, 13, 10 Inferior frontal gyrus 44 0.51

20 269, 232, 18 Superior temporal gyrus 22 0.40 47 56, 40, 7 Middle frontal gyrus 46 0.52

21 266, 255, 17 Superior temporal gyrus 22 0.67 48 31, 67, 12 Rostral prefrontal cortex 10 1

22 232, 66, 21 Rostral prefrontal cortex 10 0.97 49 70, 247, 6 Superior temporal gyrus 22 0.63

23 248, 49, 26 Inferior frontal gyrus 47 0.54 50 73, 224, 4 Superior temporal gyrus 22 0.45

24 254, 27, 28 Inferior frontal gyrus 47 0.87 51 68, 24, 22 Middle temporal gyrus 21 0.62

25 266, 24, 211 Middle temporal gyrus 21 1.00 52 59, 27, 1 Inferior frontal gyrus 47 0.62

26 270, 224, 0 Middle temporal gyrus 21 0.49 53 53, 47, 0 Inferior frontal gyrus 47 0.48

27 269, 246, 4 Superior temporal gyrus 22 0.52 54 40, 63, 1 Rostral prefrontal cortex 10 1

BA, Brodmann area.
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somatosensory cortex (BA 1/2/3), premotor and supplemen-
tary motor cortex (BA 6), subcentral area (BA 43), and primary
auditory cortex (BA 42). These ROIs were specified a priori
based on recent hyperscanning research on human-to-human
verbal communication (13,18,19,22,53,54), neuroimaging and
cortical brain stimulation meta-analyses in emotion regulation
[e.g., reappraisal (48–51)], and neuroimaging and neuropsy-
chological research on frontal lobe functions (37,46,47),
particularly on the activation biasing of stimulus-independent
attention (67) in favor of generating novel strategies
(39–43,45,68,69). That is, the channel configuration was
designed to achieve coverage only over these theoretically
constrained ROIs (70).
Signal Processing

Preprocessing of raw fNIRS signals consisted of removing
global systemic effects such as respiration, heart rate, and
blood pressure (71), using a principal component analysis
spatial filter (72,73), a technique that uses the distributed
optode coverage to distinguish signal components originating
from local and distal (i.e., extracerebral) sources. Onsets and
durations of the epochs of each trial of each block were
extracted to generate the stimulus design, with which the ca-
nonical hemodynamic response function was then convolved
4 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging - 2
using NIRS-SPM. A general linear model analysis then fitted
these predicted signals to the data, yielding beta estimates for
each parameter in the single-subject design matrices. The
contrast effects of these data were then reshaped into three-
dimensional volume images using SPM12 and normalized to
standard MNI space using linear interpolation. The results of
second-level, random-effects analyses via summary statistics
(74) based on these estimates and effects were rendered on a
standard MNI brain template. Anatomical locations of peak
voxel activity were identified using NIRS-SPM. Because this
study collected data only from the ROIs and there were no
whole-brain contrasts, corrections were not applied to the re-
sults; the false discovery rate, for example, would have been
too conservative for the nature of the study.

Interbrain synchronization (cross-brain coherence) was
evaluated across dyads (n = 30) for comparison of the clinical
and control interpersonal interactions using the wavelet anal-
ysis approach described in (75). Wavelet analysis assesses the
extent to which two or more brains (i.e., hemodynamic signals)
are correlated over time (58,76), an indirect measure of
nonsymmetrical coupled dynamic systems (77). The wavelet
function was the Complex Gaussian 2 from the MATLAB
wavelet toolbox because of its proximity to the hemodynamic
response function. The number of octaves was 4 and the range
of frequencies was 0.4 to 0.025 Hz. Therefore, there were 16
022; -:-–- www.sobp.org/BPCNNI
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Figure 3. Clinical topic interaction. Contrast comparison of situation type
(clinical . control) collapsed across role type and all subtasks for the re-
gions of interest (N = 30). Greater activation during the clinical blocks is
represented in red. The clinical situation uniquely elicited the right orbito-
frontal cortex (Brodmann area [BA] 11) and rostral prefrontal cortex (BA 10)
and the left inferior frontal gyrus (BA 47) and supramarginal gyrus (BA 40).
See Table 2.
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scales for which the wavelength difference was 2.5 seconds.
Task regressors were also removed according to psycho-
physiological analysis convention (78) to examine coherence
that was not related to task-specific processes, but rather to
dynamic coupling processes. Neural synchrony of the wavelet
components of these residuals was explored also for scram-
bled dyads (randomly matched pairs) to control for potential
effects of shared component processes that were not unique
to paired participants. As with the within-brain analyses,
channels were grouped into anatomical regions (i.e., 11 ROIs)
based on shared anatomy for wavelet analysis. Finally, all an-
alyses were conducted on both HbO2 and HbR, but the inter-
pretation of results was based on research suggesting that HbR
signals are less affected by systemic confounds (79). For
example, fNIRS paradigms involving overt as well as covert
speech tasks produce changes in arterial CO2 that, likely due to
changes in respiration, alter the HbO2 signal to a greater degree
than HbR (80,81).
RESULTS

Contrast Effects: ROIs

Within-brain statistical comparisons of ROIs that were deter-
mined a priori for situation and role types and the relative
Table 2. Voxelwise GLM Contrast Comparisons (deOxyHb Signa

Contrast Coordinatesa t Value p

Situation, Clinical . Control 38, 50, 28 2.93 .003 O

R

I

254, 38, 24 3.08 .002 I

I

34, 53, 4 3.05 .002 R

260, 252, 38 2.64 .005 S

A

Situation, Control . Clinical 66, 222, 16 22.63 .007 P

S

S

S

Threshold p = .01; df = 28.
BA, Brodmann area; deOxyHb, deoxyhemoglobin; GLM, general linear m
aCoordinates are based on the MNI system, and negative values indicat

Biological Psychiatry: Cognitive Neuroscien
subtasks of these conditions were conducted at the threshold
of a = 0.01. Examining the effects of clinical discourse in-
teractions compared with nonclinical interpersonal interactions
(clinical . control), collapsed across all subtasks and roles,
revealed significant differences in the orbitofrontal cortex (BA
11) (p , .001, t28 = 2.93), inferior frontal gyrus (BA 47) (p ,

.001, t28 = 3.08), rostral PFC (BA 10) (p , .001, t28 = 3.05), and
supramarginal gyrus (BA 40) (p , .001, t28 = 2.64) (Figure 3 and
Table 2).

Subtracting the activation in the thinking substask of re-
peaters in the control condition from that of the thinking sub-
stask of clinicians in the clinical condition (clinical thinking .

control thinking) demonstrated a significant increase in the
recruitment of the left rostral PFC (p , .001, t28 = 3.13), as well
as in a cluster covering the right middle frontal gyrus and
inferior frontal gyrus, particularly pars orbitalis (p , .001, t28 =
3.21) and in a cluster over the subcentral area (BA 43) and
primary auditory cortex (p , .001, t28 = 3.18) (Figure 4 and
Table 3).

Comparing the verbal intervention subtask of clinicians in
the clinical condition against the repeating substask of re-
peaters in the control condition (intervention . repeating) that
occurred subsequent to the thinking epochs showed
significant—albeit less—activation in the rostral PFC (p, .001,
t28 = 2.91), angular and supramarginal gyri (BA 39) (p , .001,
t28 = 2.58), and premotor and supplementary motor cortices
(p , .001, t28 = 3.02) (Figure 5 and Table 4). Results including
cluster sizes, MNI coordinates, probability estimates, and
hemispheric localizations of these contrasts are presented in
Tables 2–4.

Dynamic Neural Coupling

Cross-brain coherence between dyads during clinical
discourse interactions (clinical situation . control situation)
significantly increased between the inferior frontal gyrus (BA
44) and supramarginal gyrus (p = .002, t29 = 3.35) (uncorrected)
(see Figure 6). Changes in coherence (y-axis) are plotted over
30-second periods (x-axis). This coherence was not observed
when the partners were computationally shuffled (right panel),
that is, randomly paired with every participant except the
ls) of Situation Type

Anatomical Regions in Cluster BA Probability Voxels

rbitofrontal area 11 0.63 28

ostral prefrontal cortex 10 0.27

nferior frontal gyrus 47 0.10

nferior frontal gyrus 47 0.71 24

nferior frontal gyrus 45 0.15

ostral prefrontal cortex 10 0.99 29

upramarginal gyrus 40 0.87 10

ngular gyrus 39 0.13

rimary auditory association cortex 42 0.39 18

upramarginal gyrus 40 0.18

ubcentral area 43 0.18

uperior temporal gyrus 22 0.15

odel; MNI, Montreal Neurological Institute.
e the left hemisphere.
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Figure 4. Recogitation. Contrast comparison of the thinking subtask of
the clinical condition (i.e., internal reasoning about dysfunctional appraisals)
(clinical thinking . control thinking) for the regions of interest (N = 30).
Greater activation during the thinking subtask of the clinical condition is
represented in red. The cognitive resource demands of this type of recogi-
tation (1) significantly recruited the left rostral prefrontal cortex (Brodmann
area [BA] 10), subcentral area (BA 43), and primary and auditory association
cortices (BA 42) and the right pars orbitalis (BA 47) and middle frontal gyrus
(BA 46). See Table 3.
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original partner, which is consistent with the idea that neural
coupling is dyad specific.

DISCUSSION

This study adapted the recent approaches of multiperson
neuroscience paradigms investigating aspects of verbal
communication (13,18,19,22,53,54) to capture human-to-
human interactions that might be clinically significant. The
Table 3. Voxelwise GLM Contrast Comparisons (deOxyHb Signa

Contrast Coordinatesa t Value p

Thinking, Clinical . Control 232, 52, 0 3.13 .002 Ro

46, 38, 6 3.21 .002 Mid

Infe

Infe

Ro

266, 214, 18 3.18 .002 Prim

Sub

Sup

Pre

Thinking, Control . Clinical 252, 34, 20 23.17 .002 Mid

Infe

50, 38, 20 22.85 .004 Mid

Mid

234, 26, 34 23.45 .0009 Mid

Fro

264, 226, 42 22.80 .005 Sup

Prim

Pre

Prim

258, 212, 44 22.70 .006 Pre

Prim

Prim

Threshold p = .01; df = 28.
BA, Brodmann area; deOxyHb, deoxyhemoglobin; GLM, general linear m
Threshold p = .01; df = 28.
BA, Brodmann area; deOxyHb, deoxyhemoglobin; GLM, general linear m
aCoordinates are based on the MNI system and negative values indicate
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development and application of this novel paradigm constitute
a proof of principle, but the results were surprisingly consistent
with the prediction that interpersonal interactions in the
context of psychotherapy place unique demands on neural
systems that normal verbal communication does not. More
specifically, the within- and cross-brain coherence evidence
found in the clinical condition exhibited a pattern of mutual
engagement of subregions along the anterior-posterior axis of
the lateral surface of the cerebral cortex, particularly in the PFC
and inferior parietal lobule. The fact that the clinical condition
showed greater dynamic neural coupling between pairs of
participants is consistent with other observations of physio-
logical synchronization (heart and breathing rates) between
clinicians and clients (82–85), which stresses the need for a
more multimodal approach. Indeed, additional neuroimaging
techniques could complement temporal and spatial resolu-
tions, and other dependent measures such as eye gaze and
facial cues could enhance researchers’ ability to index
coupling between systems during clinical interactions (20,86).
One explanation for these findings is that they might derive
from normative nature of the commutation; it was largely dia-
lectical, and discourse in everyday life is typically not. An
additional element worth considering is the prosocial efforts on
the part of the clinician to positively influence the dysfunctional
information processing of the client, which could be a more
specific source of influence on the strength of interactivity
between individuals in these situations.
ls) of Reasoning Task

Anatomical Regions in Cluster BA Probability Voxels

stral prefrontal cortex 10 0.97 305

dle frontal gyrus 46 0.49 58

rior frontal gyrus 47 0.24

rior frontal gyrus 45 0.17

stral prefrontal cortex 10 0.11

ary and auditory association cortex 42 0.25 188

central area 43 0.22

erior temporal gyrus 22 0.14

- and supplementary motor cortex 6 0.11

dle frontal gyrus 46 0.71 17

rior frontal gyrus 45 0.28

dle frontal gyrus 46 0.72 13

dle frontal gyrus 9 0.17

dle frontal gyrus 9 0.76 57

ntal eye fields 8 0.24

ramarginal gyrus 40 0.41 10

ary somatosensory cortex 2 0.23

- and supplementary motor cortex 6 0.12

ary somatosensory cortex 1 0.11

- and supplementary motor cortex 6 0.59 10

ary somatosensory cortex 3 0.18

ary somatosensory cortex 1 0.10

odel; MNI, Montreal Neurological Institute.

odel; MNI, Montreal Neurological Institute.
the left hemisphere.
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Figure 5. Verbal intervention. Contrast comparison of verbal intervention
(intervention . repeating) for the regions of interest (N = 30). Greater acti-
vation during verbal intervention in the clinical condition is represented in
red. The cognitive resource requirements of verbal reasoning about
dysfunctional appraisals significantly recruited the left rostral prefrontal
cortex (Brodmann area [BA] 10), angular gyrus (BA 39), and supramarginal
gyrus (BA 40), and the right premotor and supplementary motor cortices (BA
6). See Table 4.
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The within-brain findings support the role of specific PFC
subregions in carrying out the task of clinicians to verbally
intervene and restructure clients’ dysfunctional thinking. Sig-
nificant activation was observed in the left rostral PFC (BA 10)
and right middle frontal gyrus (BA 46) during the clinical
thinking task, with the largest cluster being recruited in BA 10
(coordinates: 232, 52, 0). These results are in line with the
postulation that this task largely depends on a cognitive ability
(i.e., recogitation) that reasons about propositional attitudes in
open-ended situations to produce changes that are conducive
to well-being (1). Such an ability should place marked de-
mands on stimulus-independent operations that support self-
initiated procedures for generating and testing novel hypoth-
eses about linguistic propositions [(40–45,68,69); see (37,46)].
If this is the case, then it makes sense that such a manipulation
of self-generated information would rely on sustained activation
biasing in the rostral attentional gateway (67). The actual testing
and rejecting of thought hypotheses are potentially mediated by
the dorsolateral PFC (right BA 46) in checking whether se-
mantic criteria—stored in more posterior areas such as BA 39
and BA 40—are satisfied; it is also possible that the dorsal
anterior cingulate cortex might be involved in this procedure
(87). Future research might explore these possibilities.
Table 4. Voxelwise GLM Contrast Comparisons (deOxyHb Signa

Contrast Coordinatesa t Value

Intervention, Verbal Intervention . Verbal Repeating 244, 52, 6 2.91

252, 256, 30 2.58

50, 0, 42 3.02

Intervention, Verbal Repeating . Verbal Intervention 266, 24, 18 22.92

Threshold p = .01; df = 28.
BA, Brodmann area; deOxyHb, deoxyhemoglobin; GLM, general linear m
Threshold p = .01; df = 28.
BA, Brodmann area; deOxyHb, deoxyhemoglobin; GLM, general linear m
aCoordinates are based on the MNI system and negative values indicate

Biological Psychiatry: Cognitive Neuroscien
The findings relating to periods of verbal intervention
support not only the importance of the PFC but also that of
more posterior subregions of the inferior parietal lobule,
namely the angular gyrus (BA 39) and supramarginal gyrus
(BA 40). These two subregions comprise what is often
termed Geschwind’s territory in the literature, which is an
area associated with multisensory integration of information
such as sight, sound, and body sensation, and it is thicker in
humans than in other primates and one of the last areas of
the brain to mature, other than the rostral PFC (88); it also
mediates bidirectional information processing between Bro-
ca’s and Wernicke’s areas via the arcuate fasciculus (89).
What is unique about these regions having been recruited is
that the clinicians’ pattern of activation strongly reflects that
which is typically found in the participants of emotion regu-
lation paradigms, particularly ones involving cognitive reap-
praisal [see (90–92) for reviews]. It appears that while
restructuring the dysfunctional cognitive processes of
others’, clinicians engaged the same brain regions associ-
ated with the semantic network in modifying conceptual
valuations during cognitive change strategies. In other
words, clinicians are experts at using potentially the same
systems at which they aim for clients to become adept. This
possibility raises two interesting questions. First, would it be
possible, then, to distinguish between experienced and
inexperienced clinicians? Indeed, recent research has shown
interesting differences between novice and expert surgeons
(93). Such an investigation in the context of psychotherapy
might have implications for developing training programs.
Second, could examining discrepancies in patterns of acti-
vation between healthy populations (e.g., clinicians) and
clinical ones lead to insights that would inform efforts to
reduce these differences (e.g., cognitive training paradigms
to help clients recogitate their dysfunctional thoughts)?
Changes in such functional variations might serve as reliable
biomarkers for how clients respond to treatment at the level
of the brain and be predictive of treatment outcome mea-
sures. These possibilities are in line with recent literature on
the potential applications of multiperson neuroscience to
neuropsychiatry (94,95). In addition, within the framework
of the Interactive Brain Hypothesis (96), interbrain
ls) of Verbal Task

p Anatomical Regions in Cluster BA Probability Voxels

.003 Rostral prefrontal cortex 10 0.36 31

Middle frontal gyrus 46 0.20

Inferior frontal gyrus 47 0.17

.008 Angular gyrus 39 0.49 10

Supramarginal gyrus 40 0.49

.003 Pre- and supplementary motor cortex 6 0.80 326

.003 Pre- and supplementary motor cortex 6 0.36 12

Subcentral area 43 0.20

Superior temporal gyrus 22 0.17

odel; MNI, Montreal Neurological Institute.

odel; MNI, Montreal Neurological Institute.
the left hemisphere.
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Figure 6. Neural synchronization. Coherence of
brain-to-brain signals between clinical and control
blocks collapsed across all roles and subtasks (N =
30). Signal coherence between dyads (y-axis) is
plotted against the period (x-axis) for the clinical
(red) and control (blue) conditions. Bar graphs indi-
cate significance levels for the separations between
the two conditions for each of the period values on
the x-axis. The upper horizontal dashed line in-
dicates p # .01, and the lower line indicates p # .05.
The left panel shows coherence between actual
partners and the right panel shows coherence be-
tween shuffled partners. Cross-brain coherence is
greatest in the clinical condition between the inferior
frontal gyrus and supramarginal gyrus.

Neuroimaging Mental Health Interventions
Biological
Psychiatry:
CNNI
synchronization—or lack thereof—in clinical situations might
be interpreted as a dialectical misattunement of coupled,
dynamic systems (97,98). Clearly, these possibilities warrant
further research, and there is yet much to learn from the
brains of clinicians (1).

The fact that this sample did not consist of licensed cli-
nicians suggests something more general about the find-
ings, namely that the evidenced neural systems represent
aspects of the normal human functions that work toward
modifying propositional attitudes; clinicians are simply a
population of experts at engaging these systems. Some of
these functions are individually well understood in the areas
of language, social interaction, emotion regulation, and ex-
ecutive function but less well understood in their confluence
toward achieving the recogitation of not only dysfunctional
cognitions but also everyday thoughts people have about
the world, others, and self. This study has shown that as-
pects of the rostral PFC, inferior and middle frontal gyri, and
supramarginal and angular gyri are potentially key to this
general network. The sample also did not consist of clients
with real diagnoses, and therefore it will be important when
working with a clinical sample to assess the ways in which
activation trends might differentiate from healthy partici-
pants during verbal intervention (99). However, it is worth
noting that clinicians and clients should be able to interact
naturally while neuroimaging data are collected, without
computer mediation. To achieve this, interpersonal in-
teractions could be fractionated in similar ways to the
epochs of this design but with brain-first approaches to
extracting the stimulus design whereby significant functional
events in particular brain regions are estimated from
observed HbO2 and HbR signals (100). Portable and wireless
neuroimaging devices (28) seem also to be a prerequisite to
collecting data in authentic clinical settings (1). Moreover, it
will be important to include additional measures of people’s
phenomenological experience of clinical settings in which
neuroimaging data are collected to account for factors that
might influence the information processing systems of in-
terest, such as nervousness, novelty, attitudes toward the
therapeutic alliance, and so forth.

In sum, the practical applications of using ecological de-
signs, tasks, and methods to investigate clinically relevant
8 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging - 2
phenomena are numerous, and the findings of this study
demonstrate a precedent for the real-world neuroimaging of
inter- and intrabrain systems supporting the interpersonal in-
teractions that have long been integral to psychotherapeutic
treatment. If it is the case that understanding the intervention
tasks of clinicians at the levels of the brain and information
processing is crucial to explaining treatment outcomes, such
as improvements in emotion regulation, adaptive behavior, and
functional connectivity, and also the case that these are the
same or markedly similar tasks that clinicians aim to cultivate
in clients, then recruitment of the neural subsystems sup-
porting these tasks on the part of clients might relate to their
ability to identify, dispute, and modify their own affective val-
uations about goal-incongruent events and, therefore, to the
success of downregulating negative emotion. Future research
would benefit from using a hybrid experimental design that
takes advantage of the periodic measurement framework of
existing designs and the continuous, in situ approach of this
study to investigate the neurocognitive mechanisms by which
psychiatric change is achieved as a consequence of evidence-
based treatments for the pathogenesis of psychopathological
symptoms.
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