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Abstract Understanding the origin of noise, or variability,
in the motor system is an important step towards
understanding how accurate movements are performed.
Variability of joint torque during voluntary activation is
affected by many factors such as the precision of the
descending motor commands, the number of muscles that
cross the joint, their size and the number of motor units in
each. To investigate the relationship between the periph-
eral factors and motor noise, the maximum voluntary
torque produced at a joint and the coefficient of variation
of joint torque were recorded from six adult human
subjects for four muscle/joint groups in the arm. It was
found that the coefficient of variation of torque decreases
systematically as the maximum voluntary torque increases.
This decreasing coefficient of variation means that a given
torque or force can be more accurately generated by a
stronger muscle than a weaker muscle. Simulations
demonstrated that muscles with different strengths and
different numbers of motor units could account for the
experimental data. In the simulations, the magnitude of the
coefficient of variation of muscle force depended primarily
on the number of motor units innervating the muscle,
which relates positively to muscle strength. This result can
be generalised to the situation where more than one
muscle is available to perform a task, and a muscle

activation pattern must be selected. The optimal muscle
activation pattern required to generate a target torque using
a group of muscles, while minimizing the consequences of
signal dependent noise, is derived.

Keywords Human muscle . Motor units . Optimal motor
control . Muscle strength

Introduction

Noise or variability is an unavoidable feature of voluntary
muscle contraction and influences the accuracy of every
movement a person makes. The importance of motor noise
was demonstrated by Fitts (1954), who showed that
movements cannot be both fast and precise: there is a
speed-accuracy trade-off. Schmidt et al. (1979) demon-
strated that as the force produced by a subject increases,
the standard deviation of the force increases in a linear
fashion. Both of these results can be explained by the
presence of signal-dependent noise in muscle force
generation, that is noise whose standard deviation
increases linearly with the mean (constant coefficient of
variation). This noise has been shown to arise from the
orderly recruitment and firing rate variability found in the
motor neuron pool innervating muscles (Jones et al. 2002).
At the motor unit level there are two sources of noise: (1)
ripple, associated with an unfused contraction and time-
locked to each motor neuron spike; and (2) slow
frequency, associated with the stochastic discharge of the
motor neurons.

It has recently been proposed that reducing the
consequences of signal-dependent noise is a fundamental
strategy in human motor control (Task Optimisation in the
Presence of Signal Dependent noise, TOPS; Harris and
Wolpert 1998). The presence of noise in the motor system
means that every movement we make will have some
inaccuracy. However, different trajectories from the set of
all possible trajectories that can achieve a task may have
different error distributions. Under the TOPS strategy, the
motor system picks the trajectory that minimises the
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consequences of signal dependent noise in the relevant
task dimension. For example, to reach to a target, the
optimal trajectory under TOPS is the trajectory with the
least end point variance. Harris and Wolpert (1998)
demonstrated that this optimal hand trajectory is nearly
straight with a bell-shaped velocity profile, matching the
hand paths shown by people performing the same task
(Morasso 1981; Abend et al. 1982). Use of the TOPS
strategy is also able to account for the stereotyped
trajectories observed in ellipse drawing and eye move-
ments (Harris and Wolpert 1998) and in obstacle avoid-
ance movements (Hamilton and Wolpert 2002).

At the force level, muscle activation patterns are
redundant, that is more than one muscle activation pattern
can be used to achieve the same joint torque. For example,
extensor carpi radialis and extensor carpi brevis are
muscles acting to extend the wrist, so a desired level of
net extension torque could be achieved by activating either
one of these muscles or any combination. Despite this
redundancy, the muscle activation patterns used in a
movement show stereotypy across subjects and across
repeated trials. Descriptions of the function of different
muscles (for example, Basmajian 1978) implicitly rely on
the similarity of muscle activation patterns between
subjects. Muscle activity in specific tasks shows stereo-
typy whether subjects generate force with the fingertips
(Valero-Cuevas et al. 1998), the wrist (Hoffman and Strick
1999), the neck (Vasavada et al. 2002) or the arm (van
Zuylen et al. 1988; Flanders and Soechting 1990;
Buchanan et al. 1993; van Bolhuis and Gielen 1997).
This is despite the large number of degrees of freedom
available in these systems, for example, 23 neck muscles
to control three directions of force generation. Primates
also show repeatable patterns of muscle activation when
grasping the same object repeatedly, and different activa-
tion patterns for different objects (Brochier et al. 2001).
This suggests that stereotypy is a general characteristic of
movement and is not unique to humans.

Various cost functions have been proposed to explain
why particular patterns of muscle activation are found in
particular tasks. MacConaill (1967) suggested that the
motor system might activate muscles in order to minimise
the total muscle force required to produce a desired torque
(force multiplied by moment arm), meaning that the
muscles with the largest moment arm should be fully
activated before muscles with a smaller moment arm are
used. However, both empirical data (Basmajian and Latif
1957) and simulations (Yeo 1976) suggest this cost
function is not used in the motor system. Some
investigators have proposed cost functions based on
fatigue or endurance (Pedotti et al. 1978; Crowninshield
and Brand 1981; Dul et al. 1984a, 1984b). In contrast,
several studies suggest that either total muscle force
squared or muscle stress (force divided by physiological
cross sectional area) squared should be minimised, for
both upper limb (van Bolhuis and Gielen 1999; Gomi
2000) and lower limb muscles (Pedotti et al. 1978).
Similarly, a cost function based on a combination of
muscle effort (activation squared) and accuracy has been

suggested to account for wrist muscle recruitment (Fagg et
al. 2002).

All these cost functions are mathematically similar, and
none has been shown to be clearly superior to any of the
others (Collins 1995; van Bolhuis and Gielen 1999). The
TOPS strategy proposes that goal-directed movements
should be optimised to reduce the consequences of signal-
dependent noise, and we suggest that the same principle
should apply to the selection of muscle activation patterns
for accurate movement. For example, if the two muscles
mentioned above acting to extend the wrist contribute
different amounts of noise, the motor system should
choose to activate less noisy muscles before it activates
noisier muscles in order to make accurate movements.
However, it is not known how the level of noise varies
across different muscles—do stronger muscles generate
more or less noise than weaker muscles for the same
output force?

The purpose of this study is to investigate the relation-
ship between the strength of a muscle, the number of
motor units in a muscle and the level of noise produced by
the muscle, and thus to define a cost function specifying
which muscles should be used to generate a joint torque
with the least noise. First, we experimentally determine
how torque variability changes in relation to the maximum
voluntary torque (MVT) produced at four joints in the
human hand and arm. We cannot experimentally relate the
variability of force produced by a single muscle to its size
or strength because we cannot separate the action of a
single muscle at each joint from its agonists. However,
because the torques produced at a joint by a set of agonist
muscles will sum linearly, we consider the measured MVT
and torque variability as representative of the strength and
noise of a ‘virtual’ muscle incorporating all the agonists
acting at the joint studied. Thus we refer to muscle noise
or joint noise, and muscle strength or joint strength
interchangeably throughout, and the validity of this
assumption is considered in the “Discussion”. We also
use simulations to investigate how the noise in muscle
force or joint torque changes with the number of motor
units innervating a muscle. Thus we are able to relate the
coefficient of variation of joint torque to that joint’s
maximum torque and to the number of motor units
involved in generating the torque.

Using this data, we will be able to distinguish between
two competing hypotheses. It is possible that weaker
muscles are less noisy, if for a given level of torque output,
they activate more (weaker) motor units and thus generate
less variability. Alternatively, motor noise might follow
the same distribution as proprioceptive noise, which is
smallest (in angular terms) in the most proximal joints
(Hall and McCloskey 1983; Refshauge et al. 1995). As
proximal muscles tend to be stronger, this would imply
that strong muscles are less noisy than more distal, weaker
muscles. These two hypotheses will be tested experimen-
tally, and the causes of differences in variability between
muscles investigated by simulations.
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Methods

Torque generation experiment

Six right-handed healthy adult subjects aged between 22 and
35 years gave their informed consent to take part in this experiment,
which was approved by the local ethics committee in accordance
with the 1964 Declaration of Helsinki. For each subject, isometric
torque and torque variability were recorded at four joints in the right
upper limb. The joints were chosen to reflect a variety of muscle
sizes, with as few muscles as possible acting about each joint. The
four joint actions and muscles studied were: extension of the distal
joint of the thumb (extensor pollicus longus), abduction of the first
finger (first dorsal interosseous), flexion of the wrist (flexor carpi
radialis, flexor carpi ulnaris, palmaris longus, flexor digitorum
superficialis, flexor digitorum profundus) and extension of the
elbow (triceps and anconeus). The estimated physiological cross
sectional areas (PCSA) of the muscles acting at these joints are:
thumb: 1.9 cm2, finger: 4.1 cm2, wrist: 12.2 cm2, elbow: 21.5 cm2

(data summed from An et al. 1981; Chao et al. 1989). In each case,
the arm was secured so that only the joint of interest was free to
generate torque, and a force transducer (FT) was use to record
isometric force production in the direction of interest. The force
output was converted to joint torque by multiplying by the distance
from the centre of rotation of the joint to the FT. Locations of the FT
and restraining straps to prevent movement of other joints are
illustrated in Fig. 1.
For each muscle tested, the procedure was the same. Once the

subject was seated comfortably and the FT positioned appropriately,
three trials were performed to measure the MVT of the tested joint.
During each trial, force data was recorded at 250 Hz and converted
to a joint torque. The current torque level was displayed on a
computer monitor in front of the subjects as a narrow vertical line
which moved rightwards with increasing torque. Each subject was
asked to generate the maximum torque he or she could for 10 s,
while receiving visual feedback and verbal encouragement. Subjects
rested for at least 1 min and often longer between each MVT trial to
prevent fatigue. On MVT trials, it was found that subjects
sometimes produced a large torque at first which gradually declined,
but on other trials the torque developed slowly to the maximum
level. To take account of this, MVT was calculated as the mean of
the 1,000 highest points on each trace (not necessarily consecutive
points), equivalent to 4 s of data.
Subjects then performed 36 torque matching trials. On each trial,

the target torque was displayed as a fixed vertical line and feedback
of the actual torque produced was displayed as a vertical line of a
different colour which moved rightwards with increasing torque.
The display was scaled so that −10% MVT was at the left edge of
the screen, 0% MVT was marked with a fixed vertical line in a third
colour, and 70% MVT was on the right of the screen. Thus the
scaling on the screen remained constant for each muscle, but varied
between muscles according to the MVT of that muscle. Different
scaling was necessary for each muscle to ensure that different levels
of noise were not due to differences in the resolution of the visual
display between different muscles. Subjects were asked to match the
target as accurately as possible, so that the target line and the
feedback line (each 1 pixel wide) were superimposed. Visual
feedback was provided for 7 s, then the feedback line vanished
(target and zero lines remained visible) and subjects were instructed
to maintain the target torque level as accurately as possible for a
further 8 s. The final 10 s of torque data from each trial were saved
to disk at 250 Hz. After each trial subjects were informed of their
root mean squared error over the 8 s without feedback and asked to
keep this value as low as possible. Subjects rested for at least 2 s
between every trial, and could rest for longer if they chose. Six trials
were performed at each of six torque levels from 5% MVT to 55%
MVT in increments of 10% MVT, tested in a random order.
For data analysis, the final 8 s of each trial, i.e. the torque

generated without visual feedback, was high pass filtered to remove
the slow drift due to the absence of vision (3rd order Butterworth
filter at 0.5 Hz). The mean of the unfiltered trace and the standard

deviation (SD) of the filtered trace were calculated for each trial.
Linear regression was performed on the data from all target
matching trials to obtain the coefficient of variation (CV=SD/mean)
for that muscle. Note that CV is a dimensionless variable and is the
same whether it is calculated based on %MVT or absolute torque or
the raw force output of the FT, because both SD and mean are
measured in the same units. For the same reason, the CV of joint
torque will be the same as the CV of muscle force for the muscle(s)
which generated the torque. Thus possible inaccuracy in the
measurement of MVT, for example, due to imprecision in measuring
the distance from the centre of rotation of the joint to the force
transducer, cannot influence the accuracy of the measured CV. As
the task was isometric, differences in damping due to inertia at the

Fig. 1A–D Arm postures studied. In each plot, the black rectangle
indicates the force transducer (FT) which was clamped in place
(clamp not shown). The table top and restraining straps are shown in
grey. d indicates the distance from the centre of rotation of the joint
to the FT. A Configuration for measuring extension of the distal
joint of the thumb. The lower arm was strapped to the table, the
fingers clasped a specially shaped post and the proximal joint of the
thumb was strapped to the top of the post. Subjects pressed up on
the FT using only the distal joint of the thumb. B Configuration for
measuring abduction of the first finger. The index finger pointed
forward while the remaining fingers grasped a post and the hand was
strapped to the post. The lower arm was also secured to the table.
Subjects pressed up on the FT with the proximal interphalangeal
joint of the index finger. C Configuration for measuring flexion of
the wrist. The lower arm was secured to the table in a pronated
posture and the subject pressed down on the FT with the palm of the
hand. D Configuration for measuring extension of the elbow. The
upper arm was tightly strapped to the back of the chair, and the
shoulder and body held in place with seatbelts. Subjects pressed
down on the FT with the lower arm
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different joints also cannot influence the CV. To examine the
relationship between muscle strength or MVT, and muscle noise or
CV, these data were plotted on log-log axes. A linear regression to
the natural log (ln) data for each subject was used to obtain the
parameters c and k in:

lnðCVÞ ¼klnðMVTÞþc (1)

which is equivalent to the power law:

CV ¼ expðcÞMVTk (2)

The parameters c and k define the relationship between muscle
strength and muscle noise for each subject studied.

The muscle model

The relationship between the number of motor units in a muscle and
muscle noise was examined using a previously tested model of force
generation by a single muscle under isometric conditions (Fugle-
vand et al. 1993; Jones et al. 2002). This model has been described
in detail in other papers (Fuglevand et al. 1993; Jones et al. 2002), so
only a brief description will be given here. The muscle is modelled
as a set of motor units, where recruitment threshold, firing rate and
twitch force of each unit are related in an orderly fashion
(Hennemann 1957; Henneman et al. 1965; Somjen et al. 1965).
An activation function determines how many units are recruited and
their mean firing rate for a particular input activation. Specifically,
the recruitment threshold (RTE) of each neuron was defined by an
exponential:

RTEi¼ expðlnRR � i=nÞ (3)

(from Eq. 1 of Fuglevand et al. 1993), where RR is the range of
recruitment thresholds, i is the index of the neuron, and n is the total
number of motor neurons in the pool. This has the effect that a large
number of units have a low threshold, with fewer high threshold
units, and that recruitment is complete at the same point (in terms of
% maximum force) for pools of different sizes. Similarly, the twitch
force and contraction time of each unit were assigned according to
exponential relationships (Eqs. 13 and 15 of Fuglevand et al. 1993),

such that the first unit to be recruited had the weakest and slowest
twitch, and the last had the largest and fastest twitch. We chose to
maintain a constant range of twitch forces regardless of the number
of motor units in the pool, such that the last unit recruited always
had a twitch force 100 times greater than that of the first unit
recruited. Thus adding motor units to the pool is equivalent to
interpolating extra points into the existing distribution of recruitment
thresholds and twitch forces found in the motor unit pool. In this
way, it is possible to simulate motor neuron pools of different sizes
without altering the fundamental distribution of recruitment and
force generating properties of motor units between each pool. Note
that the actual twitch force values were scaled between simulations
of muscles of different sizes to achieve a realistic maximum
voluntary torque for each simulated muscle (as described below),
but the distribution of twitch force values was held constant. The
distribution of recruitment thresholds and contraction times across
the pool were held constant in the same manner. Additional
simulations were performed to check the sensitivity of the model to
changes in the range of recruitment thresholds in different muscles
and the effect of recruitment strategy on muscle noise.
For each motor unit that is recruited, a spike train with a Gaussian

interspike interval distribution was generated and each spike caused
a muscle twitch. The total muscle force was calculated as the sum of
all the twitches in all the motor units, giving a force trace. It has
been shown that the simulated force traces have the same variability
characteristics as human isometric force generation (Jones et al.
2002), that is, the model shows a constant coefficient of variation
during normal voluntary contraction over most of the force range.
The increase in CV at very low forces observed by Galganski et al.
(1993), Enoka et al. (1999) and others was also simulated by Jones
et al. (2002) and reasons for this result will be considered in the
“Discussion”.
The influences of two free parameters of the muscle model were

examined. First, the number of motor units (MUN) was varied to
span the range found in human muscles: settings were 80, 160, 320,
640 and 1,280 motor units (Feinstein et al. 1955; McComas 1998).
As described above, recruitment and twitch properties of the motor
neuron pool were held constant across the different numbers of
motor units. Second, we varied the spike train noise, that is, the
coefficient of variation of the interspike interval distribution of each
spike train: settings were 0.2, 0.4 and 0.6 to reflect the individual
differences in spike train variability reported by Nordstrom and
Miles (1991). Changes in these two parameters do not have an effect
on the linear relationship between mean force and standard deviation
of force characteristic of human isometric force production (Jones et

Table 1 Mean number of motor units and maximum torque for
different muscles. Sources for motor unit numbers are: BuBuchanan
et al. (1993), Ch Christensen (1959), Dc de Carvalho (1976), Fn
Feinstein et al. (1955), Ku Kuwabara et al. (1999), Mc McComas
(1998). Where two sources are given, a simple mean MUN was
calculated (without regard to the number of subjects in each source).

Maximum voluntary torque for most muscles was taken from the
tabulated data in Winters and Stark (1988), but for the three hand
muscles listed (first three entries) it was calculated from the
physiological cross sectional area (Chao et al. 1989) and the neutral
moment arm (Brand 1985) as described in the “Methods”

Muscle Mean number of motor units Maximum torque (Ncm)

First lumbrical 95.5 Fn 0.171
First dorsal interosseous 119.0 Fn 0.922
Abductus pollicus brevis 178.0 Ku 0.990
Vastus medialis 224.0 Mc 60.0
Gracialis 275.0 Ch 3.2
Plantaris 290.1 Mc Dc 4.5
Brachioradialis 332.5 Fn 10.0
Tibialis anterior 350.5 Mc Fn 37.0
Biceps 441.5 Mc Bu 9.0
Rectus femoris 609.0 Ch 45.0
Gastrocnemius medialis 678.5 Fn Ch 32.0
Semitendinosus 712.0 Ch 20.0
Sartorius 740.0 Ch 6.0
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al. 2002), that is, the model continues to show a constant coefficient
of variation. Fifteen simulations were performed to test all
combinations of these parameters, and each was replicated three
times. For each simulation, 30 force traces were generated covering
the range of input activations, and the mean and standard deviation
of these traces were used to calculate the coefficient of variation of
force produced by that model. For each set of simulations with the
same level of spike train noise, the relationship between the number
of motor units and the coefficient of variation was determined by
linear regression.
The force output of the muscle model is in arbitrary units, so in

order to compare the model performance to the measured joint
torques, we estimated the relationship between the number of motor
units in a muscle (MUN) and the maximum voluntary torque (MVT)
produced by that muscle at a joint. The number of motor units in
human muscles can be estimated from postmortem counts of muscle
fibres (Feinstein et al. 1955; Christensen 1959) combined with
estimates of innervation number distributions, or in the case of a few
groups of muscles from motor unit number estimation, MUNE
(McComas 1998; Kuwabara et al. 1999). MUNE is an electro-
physiological test mainly used in the study of amylotropic lateral
sclerosis/motor neuron disease and has most often been used with
the thenar muscle group and first dorsal interosseous (Stein and
Yang 1990; Chan et al. 2001). Definitive values of the number of
motor units in all normal human muscles do not exist, but counts for
13 muscles from a variety of sources are summarised in Table 1.
For ten of these muscles, the maximum torque produced by each

muscle was taken from Winters and Stark (1988). The other three
muscles were in the hand, and MVT for these was calculated from
PCSA and neutral moment arm (nma) data (Brand 1985; Chao et al.
1989) according to: MVT (Ncm)=50 (Ncm−2) PCSA (cm2) nma
(cm) (adapted from Winters and Stark 1988) and converted to Nm. It
is important to take a neutral moment arm midway through the range
of motion, and make the simplifying assumption that this is constant
for all joint angles, because this parameter will be used in a
regression with MUN which does not change with joint angle. All
the values of MVT are also given in Table 1. Using the MUN and
MVT values listed in Table 1, linear regression on the natural log of
MUN and of MVT was used to obtain the power law:

MVT ¼ expð�9:17ÞMUN1:92 (4)

which had an r2 of 0.53 (p=0.0044). This relationship is plotted in
Fig. 4A, and the power law was used to estimate the MVT which
would be expected if each of the simulated muscles were a muscle in
the human body. The relationship between MVT and CV could then
be obtained for the simulation results in the same way as the
experimental results.

Strong and weak muscle simulations

Simulations were also used to investigate the relative importance of
three factors influencing output variability: the firing rate of the
motor units, the number of motor units active and the recruitment
range of the muscle. Two sets of detailed simulations were carried
out comparing the performance of a strong muscle (320 motor units,
MVT=6.79 Nm) and a weak muscle (160 motor units,
MVT=1.79 Nm). The torque output of each model, in arbitrary
units, was scaled so that the maximum was equal to the MVT of that
muscle, as predicted by the power law relating MUN to MVT
described above. A constant spike train noise of 0.2 was used for
both muscles, and all other parameters, including the range of twitch
forces and recruitment thresholds, were identical. Each muscle was
activated at a range of excitations, and the torque output of the
whole muscle and firing rate of each unit was saved. Finally, the
impact of different recruitment strategies on motor noise was
examined by varying recruitment from all units at once to a 100-fold
range of thresholds, in both the strong and weak muscles.

Results

Experimental data

All six subjects were easily able to perform the task and
generate torques at the target level. Figure 2A illustrates
raw torque traces for wrist flexion performed by subject
PD. Three MVT trials are shown (three highest traces) and
six target matching trials at each of the six target levels.
MVT, mean force and standard deviation of force were
calculated for each muscle of each subject, as described in
the “Methods”. Though MVT trials were quite long, there
was no evidence for a systematic decline in MVT over the
three trials as might be expected if subjects were
experiencing fatigue. The lower lines in Fig. 2A illustrate
36 target matching trials and show the extent of the slow
drift in force due to the lack of visual feedback. This slow
drift was removed by filtering before further analysis, and
it was confirmed that the amount of drift did not vary
between the different muscles.

Figure 2B illustrates the relationship between mean
torque and standard deviation of torque for all four tested
joints of subject PD. It is clear that the slope of this
relationship, i.e. the coefficient of variation (CV), is
different for each joint, and is larger for more distal joints.
Similar results were found for the other subjects.

To characterise this change in CV fully, the CV of each
joint of each subject was plotted against the MVT of that
joint in Fig. 3A, and the natural logarithm of the same data
is shown in Fig. 3B. A fine line connects the joints studied
in each subject, in the left-to-right order: thumb, finger,
wrist, elbow. It is clear for most subjects that this line
decreases steeply at first and becomes nearly flat as MVT
increases, which means that stronger joints generate less
variable torques. Linear regression of the natural loga-
rithms of CVand MVT (Fig. 3B) gives the fit parameters c
and k in the power law CV=exp(c) MVTk for each subject,
which are summarised in the upper part of Table 2. The
mean (range) of k across the six subjects was −0.256
(−0.131 to −0.417), and the mean (range) of c was −3.91
(−3.55 to −4.16). The fit line obtained using these mean
values is shown as a grey dashed line in each plot of
Fig. 3. To summarise: the main experimental finding is
that motor output noise is greater at distal joints acted
upon by weaker muscles as demonstrated by the relation-
ship between CVand MVT. The simulations addressed the
issue of whether the differences in number of motor units
according to muscle strength can account for this
relationship.

Muscle simulations

Figure 4A shows the relationship between the number of
motor units (MUN) and MVT found from the literature
and summarised in Table 1. From the limited data set
available, it suggests that muscles with more motor units
generate larger torques and this relationship is approxi-
mated by a power law. Figure 4B illustrates the relation-
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ship between the number of motor units in each muscle
model and the coefficient of variation of force for that
muscle for the three sets of simulations with different
levels of spike train noise. The regressions for the three
sets of simulations have a very similar power (~ −0.5, that
is, an inverse square root) but differ in their intercept. This
is not surprising because it is known that increasing the
level of spike train noise increases the level of output noise
(Jones et al. 2002). Using the data in Fig. 4A and B, we
calculated the MVT of each simulated muscle and plot it
against the CV in Fig. 4C and D. These plots are

equivalent to Fig. 3A, B, and for comparison the mean fit
to the experimental data is shown as a dashed line in all
these plots. For the simulations, it can be seen that as the
MVT increases, the CV decreases, and that the mean of the
experimental data falls between the lines for the simula-
tions with 0.2 and 0.4 levels of spike train noise.

The fit parameters k and c in CV=exp(c) MVTk were
calculated for the three simulations and are summarised in
the lower part of Table 2. If we compare the parameter
values between the subjects and the simulations (upper
and lower parts of Table 2), we see that the simulation
values of k are similar to and lie within the range of k for
every subject. A t-test showed no significant difference
between the experimental and simulation values of k

Fig. 2A, B Torque data from a single subject. A Example torque
traces recorded from subject PD during wrist flexion. The three
highest traces are the three trials when the subject was asked to
produce his maximum voluntary contraction, and the black dots
indicate the 1,000 highest points (i.e. 4 s) on each trace used to
calculate the MVT for this joint (6.33 Nm). The lower traces are the
36 trials where the subject was asked to match a target torque level;
visual feedback was removed 2 s into the trace. B Relationship
between mean torque and standard deviation of torque for subject
PD, plotted as a percentage of maximum voluntary torque. Thirty-
six symbols are plotted for each muscle indicating the mean and
standard deviation on each trial. Solid lines indicate the linear
regression sd = a mean + b for each muscle; the fit parameters are (a,
b, r2): thumb: 0.033, −0.047, 0.82; finger 0.022, −0.050, 0.78; wrist:
0.013, 0.002, 0.77; elbow: 0.005, 0.102, 0.69, and all fits were
significant at p<0.001. The slope parameter a gives the coefficient of
variation for each muscle

Fig. 3A, B The relationship between maximum voluntary torque
and coefficient of variation for all subjects and all joints. The data is
plotted on linear axes in A and the natural log of the same data is
plotted in B. The four joints studied in each subject are connected by
a fine line. In each case, the leftmost symbol plots the CV of torque
generated by the thumb against the MVT of the thumb, followed by
equivalent data for the finger, wrist and elbow in order. Linear
regression was performed on the log of the data for each subject, and
the average fit over all subjects is shown as a heavy line in both
plots. The fit parameters for each subject are given in the upper part
of Table 2
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(p=0.947, df=7, t=0.068). The simulation values of c
differed across the simulations, covering a similar range to
the experimental values, and a t-test showed no significant
differences between them (p=0.601, df=7, t=0.547).

Strong and weak muscle simulations

In order to obtain an intuitive understanding of why the
noise level varies between muscles, detailed simulations of
a strong muscle (320 motor units) and a weak muscle (160
motor units) were performed and the results are illustrated
in Fig. 5. Figure 5A illustrates torque traces generated by
two simulations, and it is clear that for a similar torque
output, the strong muscle (black traces) is less variable
than the weak muscle (grey traces). Figure 5B shows the
firing rate of every fifth motor unit that generated the
traces plotted in Fig. 5A. The weak muscle has fewer units
firing and higher firing rates than the strong muscle, even
though the weak muscle has not activated every unit. It is
widely believed that lower firing rates, where twitches are
less fused, will lead to higher force variability. This is true
for muscle fibres stimulated electrically at constant
frequency (for example, Westling et al. 1990) and has
also been shown for single twitches as measured by spike
triggered averaging (Calancie and Bawa 1986). However,
these studies do not take into account the slow fluctuations
in force output which occur in response to realistically
noisy spike trains. These slow fluctuations (illustrated in
Jones et al. 2002, Fig. 4A) are not time locked to
individual spikes, but are due to the overall spike train

Table 2 Parameter estimates for CV=exp(c) MVT−k. Data is given
for subjects and simulations (±95% confidence limits), and the
parameters obtained for the simulations fall within the parameter
range found for the subjects

k parameter c parameter

Subject
pd −0.417 (±0.40) −3.87 (±0.69)
ah −0.249 (±0.09) −4.04 (±0.14)
rv −0.197 (±0.33) −4.16 (±0.59)
pm −0.131 (±0.28) −3.72 (±0.48)
ak −0.196 (±0.40) −3.55 (±0.69)
pb −0.343 (±0.35) −4.09 (±0.66)
Mean −0.256 −3.91

Simulation
Spike train noise = 0.2 −0.261 (±0.016) −4.34 (±0.043)
Spike train noise = 0.4 −0.257 (±0.017) −3.69 (±0.046)
Spike train noise = 0.6 −0.262 (±0.013) −3.29 (±0.036)
Mean −0.260 −3.77

Fig. 4A–D Simulation results.
A The relationship between the
number of motor units and
maximum voluntary torque ob-
tained from the literature
(Table 1). The fit line has an r2

of 0.67 and a p<0.02. B The
relationship between the number
of motor units and the coeffi-
cient of variation obtained from
the simulation. Results for three
sets of simulations with different
levels of input noise, as speci-
fied in the legend of plot C. The
equations of each fit line are
given. C The relationship be-
tween maximum voluntary
torque and coefficient of varia-
tion obtained from the simula-
tion results when scaled ac-
cording to the data from the
literature. Results are shown for
three sets of simulations with
different levels of input noise
and for comparison the mean fit
to the experimental data from
Fig. 3A is shown as a dashed
line. The fit parameters for each
simulation are given in the
lower part of Table 2. D The
logarithm of the data in C

423



variability. When motor unit noise is measured over a
period of seconds, slow fluctuations contribute greatly to
the noise, and force variability is seen to increase in a
square-root relation with mean force output as the firing
rate increases. Thus, the weak muscle with higher firing
rates should be expected to be more noisy, as is observed
in Fig. 5A.

Figure 5C examines this effect across the whole output
range of the muscle, illustrating the number of motor units
recruited at a particular output torque. The strong muscle
(black) has more units active across most of the range, but
the magnified inset shows that the weak muscle has more
active units for torques between 0 and 0.058 Nm, which is
3.2% of the weak muscle’s torque range. Figure 5D
confirms that the coefficient of variation of torque, i.e. the
slope of the line, generated by the strong muscle is lower
than that generated by the weak muscle, and is comparable
to the experimental data shown in Fig. 2B. Note that
towards the bottom of the range, the data points from both
muscles overlap. Here, the lower firing rate of the strong
muscle will act to decrease its noise, while the low number
of units firing will act to increase it, leading to a very
similar noise level across the strong and weak muscles.

The coefficient of variation for both simulated muscles
over the force range is plotted in Fig. 5E, which illustrates
that the CV increases at very low forces, observed
experimentally by Galganski et al. (1993) and Enoka et

al. (1999). The impact of changing recruitment is shown in
Fig. 5F. Even though recruitment was varied from none
(rate coding only) to a 100-fold range of thresholds, there
was no appreciable change in CV. This suggests that
differences in recruitment strategy between muscles are
not an important factor in differences in noise level
between muscles.

Discussion

We have demonstrated how joint strength and motor unit
number influence the variability of joint torque. As joint
strength (MVT) increases, the coefficient of variation of
joint torque (CV) decreases in an exponential fashion for
human subjects. Since CV is a dimensionless measure, it is
the same whether is it calculated based on %MVT,
absolute torque or force produced at any point along the
effector. As the experiments were performed under
isometric conditions, factors such as damping due to
inertial differences at the four joints are irrelevant. The
simulations were able to accurately model the experi-
mental data, and show that CV is dependent on the number
of motor units innervating each muscle (MUN) according
to an inverse square root power law. Therefore we
conclude that stronger muscles with more motor units
have a lower coefficient of variation of torque than weaker

Fig. 5A–F Simulation of a weak and strong muscle. A Torque
traces produced by a weak muscle (black, 160 motor units,
MVT=1.79) and a strong muscle (grey, 320 motor units,
MVT=6.79 Nm) generating 1 Nm of torque. This is 56% MVT
for the weak muscle and 14% MVT for the strong muscle. B The
number of motor units active and firing rates in each muscle when
generating the traces shown in A. Every 5th motor unit is shown for
clarity. The weak muscle has fewer units firing and at higher firing
rates than the strong muscle. C The number of active motor units
over the torque range of each muscle. The inset shows an
enlargement of the bottom of the scale. The strong muscle has
more active units at all torque levels above 0.058 Nm. D The

relation between mean torque and standard deviation of torque for
the strong and weak muscle. The strong muscle is less noisy across
the whole torque range. The parameters of the linear regression sd =
a mean + b for each muscle in order a, b, r2 are: strong: 0.0150,
0.0300, 0.98; weak: 0.0211, 0.0305, 0.98. Parameter a is the
coefficient of variation for each muscle. E The relation between
mean force and coefficient of variation of force for a strong and
weak muscle. In both cases, CV is greater for the bottom 5% of the
force range, as observed experimentally. F The influence of
recruitment on motor noise. One hundred fold changes in the
range of recruitment thresholds have no effect on the level of noise
produced by either the small or large muscles
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muscles with fewer motor units. This means that a strong
muscle will generate a target torque level with less
variability than a weaker muscle.

Why does motor noise vary across muscles?

The experimental data presented here demonstrate that
muscle noise decreases as muscle strength increases, and
the simulation data demonstrate that muscle noise
decreases as motor unit number increases. Together the
results are compatible with the hypothesis that muscle
noise falls as muscle strength increases because stronger
muscles have more motor units. However, we can consider
other possible sources that could contribute to the different
levels of noise between muscles. Five possible sources of
motor noise are: (1) central control signals, (2) range of
motor unit recruitment, (3) motor unit synchrony, (4) spike
train noise, and (5) number of motor units. Which of these
possible sources is most likely responsible for the change
in force variability between muscles we have observed?

Differences in central control are unlikely to account for
the observed data because larger cortical areas, and
therefore presumably a greater resolution, are available
for the control of small muscles such as the fingers than
for larger muscles in the upper arm (Penfield and
Rasmussen 1950), but the noise followed the opposite
pattern. Moreover, the changes in force noise did not arise
from differences in the visual control of the force because
visual feedback was identical in terms of scaling on the
screen, and no feedback was given during the period when
force variability was recorded. Thus differences in visual
or central signals cannot account for the increase in muscle
noise with decreased muscle size.

The range of motor unit recruitment has previously been
shown to have important effects on the linearity of noise
output (Jones et al. 2002). Furthermore, muscles of
different sizes are known to have different recruitment
ranges, which might influence their force variability.
However, as Fig. 5F (and Taylor et al. 2003) demonstrate,
changing the recruitment range in simulations did not have
a significant impact on the CV of muscle force, so this
factor is unlikely to contribute to the variation in noise
observed. These simulations confirm that the imperfect
assumption of equal recruitment patterns across all
muscles made in the modelling cannot adversely affect
the conclusions drawn from the model, because the same
noise level would be obtained from each muscle whatever
its recruitment strategy.

Differences in synchrony between muscles could have
an impact on motor noise and there is empirical evidence
for greater synchronization in smaller distal muscles. Datta
and Stephens (1990) report that synchronization of motor
units in normal subjects is greater in first dorsal interos-
seous (FDI) than in tibialis anterior (TA). Since increased
synchronization leads to increased noise (Yao et al. 2000;
Taylor et al. 2003), this would result in greater noise in the
small distal FDI compared to the larger TA muscle. It has
been shown that changes within the physiological range of

synchrony can double force CV (Yao et al. 2000), but our
empirical data show that the change in CV from the elbow
to the thumb is on average 3.5-fold over all the subjects.
This suggests that changes in synchrony between different
muscles may contribute but could not alone account for
the changes in CV observed in the muscles of the arm.

Spike train noise, measured as the variability of motor
neuron firing rates or interspike intervals (ISIs), is also
known to affect force output variability, but there is no
evidence that it changes systematically across muscles.
Nordstrom and Miles (1991) found a range of coefficients
of variation for motor neuron ISIs from 0.18 to 0.47 over
37 units from human masseter, and the values reported for
other muscles tend to also fall within this range (Tanji and
Kato 1973; Bigland-Ritchie et al. 1983; Garland et al.
1994; Semmler and Nordstrom 1998; Luschei et al. 1999;
Macefield et al. 2000) with no clear ordering of the spike
train noise with muscle size. Changes in spike train noise
between muscles are therefore unlikely to be responsible
for the observed changes in force variability.

Our simulations have shown that the difference in motor
unit number between muscles is a plausible and, in the
model, a sufficient cause of the difference in force
variability between muscles. We now consider why
differences in motor unit number between muscles lead
to differences in motor noise, with reference to the detailed
simulations of a strong and weak muscle. Figure 5
demonstrates that over 97% of the output range of the
weak muscle, the strong muscle has more motor units
active and lower firing rates than the weak muscle, leading
to less force noise. We have previously shown that the
standard deviation of force output increases with increased
motor neuronal firing rates and increased mean force
(Jones et al. 2002; Fig. 4C). Therefore, both the higher
firing rates and fewer active units in the weak muscle
compared to the strong muscle lead to a more variable
output for a given mean level of force. This relationship
between force noise and the number of active motor units
was independently predicted in a recent simulation study
(Taylor et al. 2003).

The counterintuitive finding that the strong muscle has
more active units to produce a given force level is due to
the unequal distribution of force output and firing
thresholds across the motor neuron pool. The motor
neuron pool is made up of many units with a low threshold
and small twitch force, and fewer units with a high
threshold and large twitch force (Hennemann 1957;
Gustafsson and Pinter 1984; Powers and Binder 1985),
which are recruited in an orderly fashion from smallest to
largest. Our simulation used the same distribution of motor
unit thresholds as Fuglevand et al. (1993), that is, an
exponential distribution in which the last unit recruited has
a recruitment threshold 30 times greater than the first unit.
Though changing the distribution of thresholds might
influence the noise level found in the simulations, it is
likely that a dramatic and unrealistic change would be
required for strong muscles to produce as much noise as or
more noise than weak muscles.
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These detailed simulations make it clear that changing
the number of motor units between muscles must lead to
changes in their motor noise. Since MUN is known to
change systematically with muscle size and MVT, we
suggest that changes in MUN can fully account for the
experimentally observed changes in CV. The number of
motor units in a muscle in effect places a ‘lower bound’ on
the level of motor noise in that muscle, and additional
factors such as synchrony and inaccurate central control
can only increase the noise above this level. This MUN
explanation of motor noise has good explanatory power as
the primary cause of differences in output noise between
muscles, and makes several predictions for further
experiments, some of which are discussed below.

Implications of the simulation results

The discovery of a close systematic relation between the
number of motor units and the level of noise produced by
a muscle (Fig. 4B) has several important implications for
our understanding of the sources of variability in human
movement. It is known that number of motor units
innervating each muscle does not change from birth to
adulthood in healthy subjects (Montgomery 1962; Tom-
linson and Irving 1977). This means that the level of motor
noise due to the number of motor units will also remain
constant over a lifetime in healthy subjects. Thus
improvements in accuracy observed over childhood
should be due to other factors such as synchrony, spike
train variability or the variability in generating central
motor commands (Deutsch and Newell 2001). Within the
adult, manipulations such as exercise should not be
expected to alter the level of noise in a muscle (Keen et
al. 1994; Semmler and Nordstrom 1998). Interestingly,
Keen et al. (1994) also reported that force variability was
reduced by strength training in elderly subjects, suggesting
that the increase in variability observed in this population
cannot be due solely to the loss of motor units. This
position is supported by recent simulations (Enoka et al.
2003), which suggest that increased force variability in the
elderly is not primarily due to loss of motor units. In
contrast, it is likely that diseases which involve motor unit
loss, in particular amyotrophic lateral sclerosis/motor
neuron disease, should also lead to an increase in force
variability, independent of the progressive decline in
muscle strength (Bromberg et al. 1993; Bromberg and
Larson 1996). Though changes in force variability have
not, to our knowledge, been tested in this patient group,
they are clearly predicted by the results presented here,
and could have implications for accurate movements in
daily life in this patient group.

Changes in CV with MUN also have the potential to
contribute to our understanding of how CV changes over
the force range within a single muscle. It has been shown
that the coefficient of variation of muscle force increases
for very low force levels (Galganski et al. 1993; Laidlaw et
al. 2000; Schiffman and Luchies 2001; Taylor et al. 2003),
and this behaviour is also seen in the simulation (Fig. 5F).

At the lowest force levels, fewer motor units are active in
the muscle (Fig. 5C), and thus force output should be
expected to show a higher coefficient of variation, as is
observed. This suggests that there is a link between the
number of active motor units and force CV within a single
muscle, similar to the relation between total MUN and
force CV between muscles. However, the exact nature of
this link at the single muscle level remains to be tested in
detail.

The CV-MUN relationship also has implications for our
interpretation of the experimental data collected in this
study. We experimentally measured the coefficient of
variation of joint torque and the maximum voluntary
torque produced at four joints, and used these results to
draw conclusions about the distribution of noise in the
muscles of the arm. Although the torque produced at a
joint is not the same as the force produced in each muscle,
torques produced by several agonist muscles will sum
linearly. Furthermore, the simulation results suggest that
the coefficient of variation of force generated by two
muscles with, say, 100 units, will be the same as the CVof
force generated by one muscle with 200 units, because the
total number of units is the critical factor in determining
the noise. Thus we can be confident that the experimental
results can be generalised from the case of torque and
torque variability to the underlying muscle force and force
variability, taking muscle moment arms into account,
without introducing inaccuracies.

The equations predicting muscle parameters

Three quantitative relationships have been suggested that
link three muscle parameters: the coefficient of variation
of muscle torque (CV), the number of motor units
innervating a muscle (MUN) and the maximum voluntary
torque produced by a muscle (MVT). These three
relationships arise from simulation (CV ∝ MUN−0.5),
experiments (CV ∝ MVT−0.25) and a literature review
(MVT ∝ MUN1.92). Not all of these values are easy to
measure in human subjects, so it is useful to consider the
accuracy of predictions that could be made using these
formulae, both at a general level and for individuals.

The most robust result is the simulation result relating
MUN to CV according to:

CV ¼ expðdÞMUN�0:5 (5)

where d varied from −1.95 to −0.89 and the power of −0.5
was reliable across all simulations. d is related to the level
of spike train noise in the model, which is a free parameter
known to vary between individuals (Nordstrom and Miles
1991). So long as d is not a function of MUN, the relation
between CV and MUN will hold. Due to the physiological
variability of motor neuron spike trains, it would not be
possible simply to calculate MUN from a measure of CV,
but knowing the relationship between muscle noise and
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motor unit number can still contribute to our under-
standing of the control of movements.

The experimental result related the coefficient of
variation of torque (CV) produced at a joint to the strength
of the joint (MVT). Both CV and MVT change through an
individual’s lifespan (for example, Connolly 1970; Laid-
law et al. 2000; Deutsch and Newell 2001), and MVT can
be greatly affected by exercise or training. Thus any
predictions could not be generalised beyond a particular
population, in this case the healthy young adults who were
subjects for this study. Within this population, muscle
strength, motor unit number and spike train noise can be
assumed to vary, and without evidence of a systematic
relation between these factors at the level of individuals it
would not be sensible to predict an individual’s MUN
based on their MVT or CV. However, the parameter fits
found over six subjects did not differ greatly (see Table 2)
and can be considered to be robust for the population.
Thus the experimental finding that CV=exp(−2.76)
MVT−0.25 can be useful for understanding and building
general models of the role of noise in motor control.

Values from a range of sources in the literature were
used to obtain the third relationship, MVT=exp(−9.17)
MUN1.92. As data was available for only 13 muscles from
a number of sources, this equation should be considered as
an approximation only. The MUN data in particular has
several possible sources of inaccuracy, as the major
anatomical study which provided five data points was
conducted on a single subject (Feinstein et al. 1955), while
the electrophysiological studies find a range of values
between individuals (Stein and Yang 1990; McComas
1998; Chan et al. 2001). It is interesting to note that the
largest outlier in Fig. 4A is the data point for vastus
medialis, where the MUN was determined electrophysio-
logically, and these methods are known to be susceptible
to underestimation (McComas 1998), while the MUN of
the next outlier (Sartorius in the lower right of Fig. 4 A)
was determined by postmortem counting, which is
potentially susceptible to overestimation due to motor
unit branching (Eccles and Sherrington 1930). If such
plausible sources of error were present in these MUN
counts, the true value for these outliers would be closer to
the fitted curve. Further data on motor unit counts in these
and other muscles would be highly valuable in confirming
the relationship between muscle strength or size and motor
unit number, and in determining which muscles are
exceptions to the rule and why. For example, the muscles
controlling the eyes are known to have a very high number
of motor units for their size (Buchthal and Schmalbruch
1980), which might be expected if the eyes require
exceptionally high accuracy, and thus low noise in their
muscle force.

Despite the possible sources of variability, the relation-
ships found from the experiment, simulations and
literature survey were all reliable and can be useful in
understanding the control of the arm. Interestingly, it is
possible to derive any one of these three relationships from
the other two. For example, equating CV=exp(−2.76)
MVT−0.25=exp(d)MUN−0.5, we can simplify to obtain

MVT=exp(4d−11.04) MUN2. The power of 2 on the
MUN term falls within the confidence limits of the power
term calculated from the literature (power = 1.92, 95%
confidence limits 0.74–3.11). This confirms the validity of
the three power laws as defining the overall relationship
between MUN, CV and MVT. It is important also to
realise that of the three correlations described above, it is
only the MUN-CV relationship which we believe to be
causative, that is, the number of motor units innervating a
muscle determines the coefficient of variation of muscle
force. In contrast, the relations between CV and MVT or
MUN and MVT are likely to be a corollary of the structure
of the muscle-nerve system, and the question of whether,
for example, MUN might relate more closely to maximum
muscle force than MVT, remains open.

Optimal muscle co-ordination

Understanding the distribution of noise in the arm has
implications for our understanding of the control of the
arm. The human arm has approximately 30 muscles to
control 7 joint degrees of freedom from the shoulder to the
wrist, excluding the translation degrees of freedom of the
shoulder/scapula system. This redundancy means that
every movement must involve selecting one of all the
possible muscle activation patterns that would achieve the
desired torque at each joint. Many different principles have
been suggested for selecting the distribution of forces
between several muscles, but most optimise some function
of muscle force (f) and physiological cross sectional area
(PCSA). In a comparison of several possible cost functions
with experimental data, van Bolhuis and Gielen (1999)
concluded that muscles should be activated to minimise
the sum of muscle stress squared, and Gomi (2000)
reached the same conclusion independently. The cost
function they propose is:

Cstress ¼
Xn

i¼1

ðfi=PCSAiÞ2 (6)

where n is the number of muscles involved in the task, and
subject to the constraint:

F ¼
Xn

i¼1

fi (7)

where F is the total force required.

In contrast, the TOPS model (Harris and Wolpert 1998)
proposes that muscles should be activated to minimise the
effects of muscle noise, i.e.

CTOPS ¼
Xn

i¼1

�2
i (8)

where σ2 is the variance of force produced by each muscle.
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In order to apply this cost function to specific muscle
groups, we can derive a new cost in terms of the number of
motor units in each muscle involved in the task (see
“Appendix” for derivation):

CTOPS ¼
Xn

i¼1

ðf 2i
�
MUNiÞ (9)

This gives a precise method to calculate the optimal
muscle activation pattern under TOPS, and because MUN
does not change from birth to adulthood (Montgomery
1962) and is not influenced by exercise or training, this is
a robust and general cost applicable to a range of
situations. In simple terms, this cost function means that
in a synergistic group, muscles with more motor units
should be activated in preference to those with fewer
motor units, because this should lead to the least noise in
the total force output. This is in agreement with the
patterns of muscle activation found by Hunter et al.
(2002), who found greater normalised EMG in brachialis
(MVT=13.3, calculated MUN=456) than in biceps
(MUN=440) or brachioradialis (MUN=333) in a submax-
imal contraction. However, this must be interpreted with
caution, as the normalised EMG is an indirect measure of
the force produced by each muscle. It is more helpful to
assess the validity of muscle cost functions by examina-
tion of muscle preferred directions (van Bolhuis and
Gielen 1999; Gomi 2000). The validity of this TOPS cost
could be also confirmed if muscle use patterns were shown
not to change with strength training, a manipulation which
changes muscle size and strength, but not motor unit
number or muscle noise (Keen et al. 1994). If the TOPS
cost is able to account for human muscle activation
patterns, this will be further evidence that the reduction of
the consequences of signal-dependent noise is an overall
principle for the control of human movement.

Overall conclusion

We have demonstrated that stronger more proximal joints
in the human arm have lower levels of motor noise than
weaker more distal joints, and that there is a systematic
relationship between joint strength and noise. We have
also shown that the level of noise found in muscles is
systematically related to the number of motor units in each
muscle. This suggests that motor noise follows a similar
distribution in the arm to proprioceptive noise and that
change in the size or strength of arm muscles should not
change the variability of muscle force. Using these results,
we have derived a new cost function that describes how
muscles in the arm should be activated to minimise the
consequences of signal-dependent noise under the TOPS
framework.
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Appendix

Two cost functions describing how muscles should be
used to minimise the consequences of signal-dependent
noise can be derived from the basic TOPS cost function
given in Eq. 8. Using the simulation results given in Eq. 5
and substituting:

CV¼�=f (10)

gives:

�¼ expðdÞfMUN�0:5 (11)

As this holds for every muscle, the constant exp(d) can
be ignored and σ can be substituted into the TOPS cost
function (Eq. 8) to give:

CTOPS ¼
Xn

i¼1

ðf 2i
�
MUNiÞ (12)

Despite the interesting predictions of the MUN cost
function, the current paucity of data on motor unit
numbers means that this cost function is not easy to
apply in practice. For this reason, we also derive a second,
more practical cost function, based on the experimental
results. Taking the mean parameters for the six subjects,
we have shown that:

CV ¼ expð�2:76ÞMVT�0:25 (13)

Substituting Eq. 10 gives:

�¼ expð�2:76ÞfMVT�0:25 (14)

Again, the constant exp(−2.76) can be ignored and σ
can be substituted into Eq. 8 to give:

CTOPS ¼
Xn

i¼1

ðf 2i
�
MVT0:5

i Þ (15)

This cost function can be used to determine the optimal
control strategy for minimising noise over multiple
muscles and requires only knowledge of the maximum
voluntary torque produced by each muscle, which is
available in standard tables (for example, Winters and
Stark 1988).
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