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ABSTRACT
This paper presents a novel method to synchronisemultiple IMU (in-
ertial measurement units) devices using their onboard magnetome-
ters. The method described uses an external electromagnetic pulse
to create a known event measured by the magnetometer of multiple
IMUs and in turn used to synchronise these devices. The method is
applied to 4 IMU devices decreasing their de-synchronisation from
270ms when using only the RTC (real time clock) to 40ms over a
1 hour recording. It is proposed that this can be further improved
to approximately 3ms by increasing the magnetometer’s sample
frequency from 25Hz to 300Hz.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools.
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1 INTRODUCTION
In the last decade there has been a huge growth in applications for
IMU-enabled wearable and IOT devices. Applications stretch from
early work in human activity recognition [2] to studies measuring
the cohesiveness of social interaction [10]. Many such applications
require precise synchronisation between separate IMU devices.

Most commercial IMUs include an on-board real-time clock
(RTC). Unfortunately, the precision synchrony of an RTC is de-
pendent on the length of the recording, meaning it is not a viable
option for longer experiments.

Efforts to overcome the synchronisation problem can be grouped
into three categories: network-based, event/gesture-based, or a com-
bination. Much work has been done using Network Time Protocol
(NTP) [5, 8, 11] and Precision Time Protocol (PTP) [4] for time
synchrony in IoT, however such protocols have been proven to be
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Figure 1: Experimental setup

noisy with errors exceeding 1800ms or impractical for common
mobile sensing task [6]. Moreover, most commercial IMU devices
do not have network options requiring external network chips to
be included. One solution is to use sync events within the data
itself, creating a common signal across different sensors and sen-
sor types to facilitate temporal alignment. Kinetic events are most
commonly used requiring the experimenter or participant to make
a predefined movement, such as clap or hit the table [1, 7–10], or
even tap the ear [3]. These kinetic-based events can be disruptive
often requiring the subjects to stop what they are doing to perform
an action or even in some cases transfer their wearable sensors to
holders. The method proposed by this paper would minimise these
disruptions and replace them with a wireless solution that requires
no new hardware to be added to the commercial IMU devices.

2 METHOD
A simple electromagnetic pulse generator (EMPG) was built by at-
taching an electromagnet to an Arduino UNO via a full h-bridge, see
fig 1. This EMPG was configured to transmit a 4 period length pulse
at 0.5Hz. The electromagnet at 2W has a magnetic field strength of
0.2µT at 11cm. Below 0.2µT the magnetometer fails to measure the
pulses giving an active range of 11cm.

Four MetaMotion R3 modules, from Mbientlabs Inc, USA, were
setup using an iPad. Each module was configured to logging mode.
The accelerometer, gyroscope and magnetometer were activated to
record at 25Hz. The gyroscope was set to ±1600 °/s . The accelerom-
eter was set to ±16дs . The magnetometer’s resolution is fixed at
±1300µT . The modules were placed in a holder, see fig 1. The holder
is required for the kinetic event; for the EMP event the sensors are
only required to be within the active range of the EMPG, removing
the time consuming process of securing the devices in the holder.

Two synchronising events were generated at the start and end of
the recording. A 4 period-length electromagnetic pulse (EMP) event
was generated using the EMPG. A kinetic event as described in [10]
was then completed by swiftly lifting and slamming the holder. The
devices were then worn by the experimenter for approximately 1
hour of arbitrary movement. Afterwards the devices were returned
to the holder and the EMP and kinetic events repeated.
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Figure 2: IMU magnitude data highlighting sync. events.

Table 1: Offsets and drift before synchronisation

(Vs. device 1) 1st offset (ms) 2nd offset (ms) Drift (ppm)
Device 2 270 14 59.949
Device 3 170 19 40.00357
Device 4 260 100 42.5381

The raw 3-axis accelerometer, gyroscope, and magnetometer
data of the devices were uploaded to be processed in MATLAB. The
magnitude of each sensor was calculated and plotted against epoch
time, as determined from the onboard RTC. The IMU amplitude
data for the 4 devices are shown in fig 2 with the first kinetic and
EMP events magnified.

The rising and falling edges of the EMP events were used to align
the plots manually (as done previously using kinetic events [1]).
The 1st EMP event was aligned by translating the plots. Both events
were then aligned by scaling the plots (pivoted on the 1st ).

3 RESULTS
We first report the timings for the two events using the RTC. Table 1
shows the offsets for 1st and 2nd events, alongside clock drift, in
parts-per-million (ppm). Note that the offsets are greater at the
beginning of the recording than at the end due to the RTC syn-
chronisation being done on the last measurement and computed
backwards.

Using these offsets and clock drifts, the EMP events are manually
synchronised. Fig 3 shows the EMP events for accelerometer and
magnetometer before and after EMP synchronisation.

4 DISCUSSION OF RESULTS
After EMP synchronisation, the offset measured by the kinetic event
in most cases is indistinguishable (<3ms). However, device 1 has
an offset of 37ms in the first synchronisation window (as visible
in the top right kinetic plot of fig 3). The sampling frequency of
the magnetometer is the limitation here. With a sample frequency
of 25Hz, a precision of around 40ms is expected. In the case of the

Figure 3: First and second kinetic (accel.) and EMP (mag.)
event windows before and after synchronisation.

MetaMotion R3 the magnetometer can be configured to sample up
to 300Hz giving a potential precision of approximately 3ms.

Note that because there is no ideal ground truth for the timings,
all results are calculated using distinguishable features in the data.
One of the limitations on using kinetic events is that the signals have
slight variations due to noise and micro-vibrations, thus making
precise alignment challenging.

Excluding the amplitude of the EMP event, the shape across the
four devices is relatively consistent with defined rising and falling
edges. These defined edges remove the ambiguity associated with
aligning a kinetic event [1].

Because the shape and frequency of the EMP sequence is user-
defined, it can be configured to provide additional information,
such as unique identifiers to differentiate separate experiments or
repeated sync events.

The RTC crystal has a precision of approximately 40ppm, so as
the epoch timemoves away from the RTC synchronisation point the
offset error increases. However, the drift between device 1 and 2 of
60ppm is unexpected, potentially indicating a bad crystal oscillator.

5 CONCLUSION
An EMP-based method to synchronise multiple IMU devices to a
precision of 40ms has been described. Unlike the standard method
of using only the RTC this method’s precision is not proportional
to the length of the recordings but instead the sample frequency of
the magnetometer.

The method offers a minimally-disruptive approach to create
events in the measurements without requiring any retrospective
changes to the IMU devices meaning this approach can be accom-
plished with any commercial IMU device which includes a magne-
tometer sensor.

Future work will include extending the range of the EMPG, im-
plementing automatic aligning of the synchronisation points and
running further tests in a number of working environments.
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